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Abstract By using the transfer-matrix method, we have studied lhe interface plasmon 
modes of an infrnile-layered two-dimensional eleclron-gas system, in which a l l  lhe layers 
are arranged periodically except for one region of quasi-periodic layers mapping lhe rule 
of the Fibonacci sequence. I1  has been found thal with the removal of lranslalional 
symmelry. lhe spectrum of localized inlerface plasmon modes, bolh acauslic-like and 
optic-like. becomes very rich. The dispersion relation of  the interface plasmans is 
presented in lerms of the transfer-matrix elemenls. and a couple of  critical wavevecton 
is also found. 

1. Introduction 

The collective excitations of superlattices have been extensively studied in the 
past few years [l-161. Plasmons in superlattices, as we know, can propagate 
along the superlattice direction because of the coupling between the layered two- 
dimensional electron gases (ZDEGS) due to the long-range Coulomb interaction, 
For the periodic semiconductor superlattices (for example, the modulation-doped 
G a h - A I G a h  heterostructures), the dispersion relation of hulk plasmons, in which 
the modes propagating along the superlattice direction are characterized by Bloch 
indices, has been obtained by both hydrodynamic theory [l] and the self-consistent 
field apprWdCh [2], and confirmed experimentally 131. By imposing the standard 
electrodynamic boundary conditions at the layers of the ZDEG and taking thc non- 
retarded limit ( q c  >> w )  Giuliani and  Quinn [4] have investigated the surface 
plasmon for a semi-infinite semiconductor superlattice adjoining a bulk insulator, 
Their theoretical results show that the plasmon mode can occur either above or  
below the hulk plasmon continuum, but it exists only when the background dielectric 
constant of the semiconductor differs from that of the bulk material. They also 
showed that it intersects the bulk plasmon continuum when the wavevector is smaller 
than some critical value. Both the electric response of a semi-infinite layered ZDEG 
and Raman scattering from its bulk and surface plasmon have been worked out by 
solving the random-approximation equations 171. Constantinou and Cottam [6] havc 
recently extended the theoretical work, and calculated the collective plasmon modes of 
a superlattice composed of ZDEG layers separated akernately by two kinds of medium, 
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which may have different thicknesses and dielectric constants. The surface plasmon 
modes have been investigated for various surface parameters: the surface electron 
density and the dielectric constant of the bulk medium. They have also examined the 
effects on the surface plasmon intensity due to the presence of a capping layer at the 
surface of a superlattice, which relates to the problem of observing surface plasmons 
by techniques such as Raman scattering. 

Recently, Bloss has studied the localized interface plasmon modes of an infinite 
periodic array of quantum wells where all the wells are doped with the same electron 
density except for one in the middle of the system [14], and two coupled semi-infinite 
periodic arrays of quantum wells separated by a distance d [15]. A unique set of 
interface modes resulting from the break of the translational symmetry have been 
found. 

In this paper, we extend Bloss' work by replacing the region separating the 
two semi-infinite superlattices with a quasi-periodic superlattice of quantum wells 
to study the localized interface plasmons. We let the quasi-periodic array be arranged 
in agreement with the Fibonacci sequence, since this heterostructure has in recent 
years attracted considerable interest for its scaling behaviour and critical properties 
[lo, 11,17-191. We found that with increasing generation number, the interrace 
plasmon modes (both acoustic-like and optic-like) gain a rich structure, and we also 
found a couple of critical wavevectors for the existence of the interface plasmon 
modes. It is known that the bulk plasmons of superlattices have already been 
observed experimentally [3,5], but those at the surfaces and interfaces have not 
been successfully detected yet. Several authors have remarked on the observability 
by techniques such as Raman scattering and electron-energy-loss spectroscopy [ G I ,  
and using far infrared attenuated total reflection spectroscopy [16]. We hope that 
experimentalists are encouraged to investigate our theoretical results. 

2. Theory 

The system under consideration is composed of two semi-infinite superlattices of 
quantum wells growing in the z-direction and separated by an nth generation 

two distances aL and as recursively following the Fibonacci sequence, as shown in 
figure 1 (for details of the Fibonacci superlattice model, we refer the reader to the 
pioneering work of Merlin and co-workers [19]). For simplicity, we take the two semi- 
infinite superlattice to have the same periodicity d and assume that the separation 
between the adjacent wells is so large that the overlap of the electron wavefunctions 
can be neglected, and that the width of the wells is so small that the electron gas 
there can be regarded as composed of sheets. So the system is specialized as a 
series of layered ZDEGS aligned parallel to the z-y plane and imbedded in a material 
of background dielectric constant E [2,4]. We also take the non-retarded limit and 
long-wavelength approximation. 

To find the interface plasmon excitations, one should solve the Poisson equation 
coupled to the density response of the ZDEG. The general solution for the system can 
be written as 

C;hc--CCi ::;.+nttirP cf ;-nr.?:m .u.!$, ir. which t h p  IcjjlPp"f w& are ~pnanter l  hy , ~ ~ ~ - ~ ~ ~ -  ~ 
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Figure 1. 'Pmo superlallices of quantum wells wi1h lhe s l m e  periodicity d separated by 
a fourth-generation Fibonacci superlallice of quantum wells. 

Cor z < 0, where t- and q are the position vector and wavevector in the z-y plane 
respectively. The combination of the electromagnetic boundary conditions across the 
electron layers leads to the transfer relation [lo]: 

where 

with 

det(T(dl)] = 1 d, = d,  a L ,  as (5)  

and x is the susceptibility of the zDEG, which can be expressed as 

(6) 
2 X = W ; ( Q ) / w  

in the long-wavelength limit. Here 

(7) 
W , ( Q )  = (2'7rez71Q/cm I ) 112 

is the  ZD plasma frequency, and m" and n are the electron effective mass and density 
of the ZDEG, respectively. Across the interface at z = 0, the transfer relation is given 
by 
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where 

Z = [ L x  l+ , I .  -x (9) 

For the region of the two semi-infinite periodic superlattices of quantum wells, the 
complex Bloch index n = IC + ia can be introduced, which leads to the relation 

The real part k of n represents the bulk mode propagating along the r-direction 
and the imaginary part a is a decay factor corresponding to the local mode. From 
equations (3)-(5) and (10). we have 

It should be noted that the right-hand side of equation (11) is a real number. If the 
parameter 1171 < 1, then a = 0, and equation (11) gives the dispersion relation for 
the bulk plasmon 

cos (nd)=q  q ~ f T r T ( d ) .  (11) 

w ( q , k )  = w,(q) [sinh(qd)/[cosh(qd) - ~ o s ( k d ) ] ] " ~ .  (12) 
If 171 > 1, then a # 0, thus kd must be equal to 0 or ?r depending on whether 7 > 1, 
or  1) < -1, and this case occurs in the forbidden band of bulk plasmon. Since we are 
only interested in the local interface plasmon modes, we take the case of a # 0. For 
given values of q and w, the decay factor a, which is the inverse of the localization 
length, must be positive and satisfy the equation (11). Hence we have 

a = d-' In [ 1171 + ( 17' - 1)'/'] (13) 

where 1111 > 1. 

n th  Fibonacci superlattice, we find 
When connecting (A;, B;) to (A$",  E$") for two neighbouring layers of the 

where F,, is the nth order of the Fibonacci number, which is defined as 

and 
- v -  J 7 - 1  - 7  -, P. = 1, -' F - = ? ,  . i ,  F,, = F,.-; + F,.-:; (15) 

xn = c,z (16) 

C, = T ( a s )  C, = T ( e L ) .  . . C, = Cn-,C,.-,. (17) 

XlZY2 + (XI, - xz'h - x,, = 0 

with 

After solving equations (3)-(14), we obtain the dispersion relation for interface 
plasmon modes as follows: 

where Xij are the elements of the transfer matrix X,, and 
(18) 

where T i j ( d )  k also the matrix element of T ( d ) .  The sign of y* is determined by 
whether 11 > 1 or 17 < -1, corresponding to the higher-frequency modes (optic-like) 
and lower-frequency modes (acoustic-like), respectively. 
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3. Numerical results and conclusions 

By using equation (18) obtained in the last section, one can calculate the dispersion 
relation of the interface plasmon numerically. In our real calculation, we choose the 
frequency unit as 

wu = (47re2n /cm'd) ' /2  (20) 

and take the ratio of the width for the two elementary cells of the Fibonacci 
superlattice as the inverse of the golden mean, aS/aL = (& - 1) /2  E n, and 
aL/d 5 T ,  where d is the periodicity of the semi-infinite superlattices. 
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Figure 2. P l o s  of frequency versus qd for the 
three-generation local quasi-periodic superlallices: 
(a )  n = 3, (b)  n = 4 and (c) n = 5 wilh 
aLJd E I = 0.2. 

Figure 3. Plols of frequency versus 9d for the fiflh- 
generation local quasi-periodic superlallice wilh lhe 
differen1 separation ralios T E o ~ / d  ((I) T = 0.3, 
(b)  r = 0.4 and (c) r = 0.5. 

On the three frames of figure 2, we have plotted the plasmon dispersion for the 
case of T = 0.2, for generation number n = 3, 4 and 5 respectively. In figure 2, the 
region between the dashed lines, which are drawn using the dispersion equation (12) 
when cos(lcd) = +l, represents the bulk plasmon continuum. We find that as 
generation number increases, more and more interface plasmon modes, of which 
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there are F,, + 1 in all, appear in both the higher-frequency and lower-frequency 
region. And we also find that when we increase the value of T ,  i.e. increase the 
separation between the ZDEGs in the Fibonacci superlattice, which means decreasing 
the coupling between them, all the interface modes are close to the bulk plasmon 
continuum. If we put the generation number n = 2 and T = 1, the model system 
will reduce to that of two semi-infinite periodic superlattices separated by a distance 
as, and the results return to thme obtained by Bloss [15]. 

1 (4 
1.6 1 

0.0 - 1 2 3 4 6 e 

(q%it 

4, cc scp*c&Gz ..;iG CL;: ~ (-2, . .4_t_.".î iln *hp ,.A,;,.", ._.""" ,~~,~,,, " ~ ..._ 
wavevector far the existence of the interface plasmon modes: (a )  higher-frequency mode, 
(b) lower-frequency mode. 

From our numerical results, we also find a couple of critical wavevectors for the 
existence of the interface plasmon modes as shown in figures 2 and 3. There are 
two kinds of interface plasmon modes as can be seen from the figures, one exists 
for all wavevectors and the other exists only for the case when the wavevector is 
greater than the critical wavevector. Letting the decay factor oi approach zero in 
equation (IS), we can study numerically the dependence of critical values of (q&, 
on T .  In figure 4, we have plotted the curves of T versus (qd),h, for the case of 
n = 5. Figure 4(a) is relevant to the higher-frequency modes, and figure 4(b)  to the 
lower-frequency modes. From figure 4, we can clearly understand the shift of the 
critical points (the points of dispersion curves of localized plasmon modes in contact 
with the edge of the bulk plasmon continuum) with T .  It can be seen that for the 
higher-frequency modes, all except one of the minima of the critical wavevectors are 
located at 7 E 0.5. 
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With decreasing T, the critical wavevector increases quickly to infinity, which 
means the corresponding branch of localized plasmon modes vanishes. But the 
topmost of the higher-frequency branches, which originates from q = 0, always exists 
as T tends to zero. This limit case corresponds to the case that in the middle of 
the layered 2DEG system, there is an electron layer, whose charge density is different 
from the others[l4]. On the other hand, if T increases, the critical wavevecton will 
also become large quickly, and when T approaches a critical value, all the critical 
wavevectors will increase to infinity, that is, all the localized plasmon modes, both 
higher-frequency and lower-frequency modes, will disappear. It is shown that whether 
the localized plasmon modes exist or not depends sensitively upon the geometry of 
the quasi-periodic superlattice. 

In conclusion, we have studied the dispersion relation of the localized interface 
plasmon in a local quasi-periodic superlattice. The presence of these modes depends 
on the geomehy of the quasi-periodic superlattice. If the separation aL (or as )  
between 2DEGs in the quasi-periodic region is smaller than the periodicity of the 
superlattice, the rich localized interface plasmon modes appear around the two sides 
of the bulk plasmon continuum. When the separation aL (or as) is larger than a 
critical value, all the interface plasmon modes disappear. 
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